

\(\displaystyle f\left( x \right)=\left\ \right.\) Note that there is an example of a piecewise function’s inverse here in the Inverses of Functions section. Thus, the \(y\)’s are defined differently, depending on the intervals where the \(x\)’s are. The easiest way to think of them is if you drew more than one function on a graph, and you just erased parts of the functions where they aren’t supposed to be (along the \(x\)’s). Piecewise functions (or piece-wise functions) are just what they are named: pieces of different functions (sub-functions) all on one graph.
PIECEWISE FUNCTION PRACTICE HOW TO
Introduction to Piecewise Functions Absolute Value as a Piecewise Function Evaluating Piecewise Functions Transformations of Piecewise Functions Graphing Piecewise Functions Piecewise Function Word Problems How to Tell if a Piecewise Function is Continuous or Non-Continuous More Practice Obtaining Equations from Piecewise Function Graphs Introduction to Piecewise Functions

Applications of Integration: Area and Volume.Exponential and Logarithmic Integration.Riemann Sums and Area by Limit Definition.Differential Equations and Slope Fields.Antiderivatives and Indefinite Integration, including Trig.Derivatives and Integrals of Inverse Trig Functions.Exponential and Logarithmic Differentiation.Differentials, Linear Approximation, Error Propagation.Curve Sketching, Rolle’s Theorem, Mean Value Theorem.Implicit Differentiation and Related Rates.Equation of the Tangent Line, Rates of Change.Differential Calculus Quick Study Guide.Polar Coordinates, Equations, and Graphs.Law of Sines and Cosines, and Areas of Triangles.Linear, Angular Speeds, Area of Sectors, Length of Arcs.Conics: Circles, Parabolas, Ellipses, Hyperbolas.Graphing and Finding Roots of Polynomial Functions.Graphing Rational Functions, including Asymptotes.Rational Functions, Equations, and Inequalities.Solving Systems using Reduced Row Echelon Form.A function is constant when the graph is a perfectly at horizontal line. A function is decreasing when the graph goes down as you travel along it from left to right. The Matrix and Solving Systems with Matrices A function is increasing when the graph goes up as you travel along it from left to right.Advanced Functions: Compositions, Even/Odd, Extrema.Solving Radical Equations and Inequalities.Solving Absolute Value Equations and Inequalities.Imaginary (Non-Real) and Complex Numbers.Solving Quadratics, Factoring, Completing Square.Introduction to Multiplying Polynomials.Scatter Plots, Correlation, and Regression.Algebraic Functions, including Domain and Range.Systems of Linear Equations and Word Problems.Introduction to the Graphing Display Calculator (GDC).Direct, Inverse, Joint and Combined Variation.Coordinate System, Graphing Lines, Inequalities.Types of Numbers and Algebraic Properties.Introduction to Statistics and Probability.Powers, Exponents, Radicals, Scientific Notation.
